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ABSTRACT
In recent years, the digital twin has been one of the active research

areas in modern Cyber-Physical Systems (CPS). Both the digital

twin and its physical counterpart, called a plant, are highly inter-

twined such that they continuously exchange data to reveal useful

information about the overall system. Such class of CPSs need to

be robust to various types of disturbances, such as faulty sensors

and model discrepancies, since the interplay between the phys-

ical plant’s operation and digital twin’s simulation may lead to

undesirable or even destructive effect. To address this problem,

this paper introduces a flexible anomaly detection framework for

monitoring anomalous behaviours in digital twin based CPSs. In

particular, our approach integrates both the digital twin and data-

driven techniques that detect and classify anomalous behaviours

due to modelling errors (e.g. incomplete models) and sensor and

physical system’s faults. The framework can be deployed to any gen-

eral CPSs without the full knowledge of the digital twin’s internal

model. Therefore, our method is amenable to various types of digi-

tal twin implementations that enhance the traditional data-driven

anomaly detection mechanism. We demonstrate the performance

of our approach using the Tennessee Eastman Process model. The

experimental result shows our approach is able to effectively detect

and classify anomaly sources from the physical plant, sensor and

digital twin, even in the situation when a certain combination of

multiple anomalies occur simultaneously.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.
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1 INTRODUCTION
With the advancement of technologies used in today’s Cyber-Physical

Systems (CPSs), the concept of digital twin has emerged and its

demand in CPS has been increasing significantly for the past several

years [19]. Digital twin is a virtual replica of a real world object

that can accurately monitor, predict and optimise processes of the

twin’s physical counterpart. Due to its ability to accurately imitate

the physical process, many recent CPS applications, including air-

craft [24], manufacturing [2, 8] and healthcare [3] etc., have been

adopting digital twin based solutions. One of the main challenges

for such CPSs, where the results of digital twin simulations and

physical processes are highly interdependent, is their ability to

detect potential anomalies that can result in undesired effects such

as system failures.

In CPSs, anomalies are the observed sensory data affected by at-

tacks, faults, etc and are not conforming to thewell-defined system’s

behaviour. Anomaly detection for CPSs has been widely discussed

in the literature due to the high demand for early detection and

prevention of failures that can cause significant economic losses.

The existing anomaly detection approaches can be classified into

two categories: model-based and model-free [22]. In model-based

approaches, a model is constructed from the prior knowledge of the

underlying system using the first principle of physics. These models

are then used to construct a residual generator that measures the

degree of abnormality by comparing the online data collected from

the physical system with the model’s predictive value [6]. On the

other hand, model-free or data-driven approaches employ classi-

fiers that identify the types of abnormalities based on the online

process measurements [7]. The performance of the model-free ap-

proaches, in general, depends on the quality of the offline training

data, which is used for estimating the classifier.

In general, model-free approaches do not require expert knowl-

edge of the target system, however, the availability of anomalous

data is often limited that makes generating accurate classifiers hard.

This makes the model-free approaches less practical to determine

the anomalous sources. On the other hand, the model-based ap-

proaches have the benefit of being able to accurately detect anom-

alies given that such models are available or can be efficiently

created by designers. Nevertheless, the model-based approaches

generally suffer scalability issues and validation difficulties such

that it is hard to be applied in large-scale systems. Besides, in the

digital twin embedded CPS, the model synchronisation with real-

time data and changes in the physical system’s operating condi-

tions (modes) might not be captured by the digital twin, which can

cause synchronisation error. Therefore, the classical model-based

approaches alone, which mostly assume the models are correct, are
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not well-suited for anomaly detection for the digital twin based

CPSs.

By combining digital twin simulation with streaming data ob-

served from the physical system, our objective is to introduce

an anomaly detection framework that can identify the sources

of anomalous events effectively. Our approach is different from

the traditional anomaly detection techniques, which mostly only

consider anomalies in the physical plant whereas we consider more

realistic scenario where the digital twin is an imperfect artefact.

More precisely, the digital twin in our framework can model only a

subset of the physical system’s behaviour. This is mainly because

a complete fault-free data from the physical plant is not always

available. Moreover, exploring the complete state of the digital

twin model is not always possible due to the problem of the model

complexity.

As presented in our experiments on the Tennessee Eastman

Process model [4], our framework has the capability to detect and

differentiate anomalies caused by sensor faults, missing modes in

the digital twin, or physical system failure. Besides, the anomalies

caused by the simultaneous occurrence of the sensor faults and

missing modes in the digital twin model can also be detected. In

particular, it took by average 212 sampling delays for our approach

to detect anomalies from their first occurrences when the anomalies

are caused by both the plant and twin whereas 144.75 sampling

delays for the sensor faults only.

The specific contributions of this paper are: (1) A novel anomaly

detection and classification framework for large-scale digital twin

embedded CPSs where the sources of anomalies can be either or

both the digital twin and physical plant; (2) A detection mechanism

that employs digital twin model as well as streaming data from the

physical system to classify the anomalous behaviour; (3) Applica-

tion of the approach to the realistic scenario that is based on the

chemical process plant.

Our framework does not rely on specific modelling techniques

for digital twin implementation. In fact, we assume these models

are black-box that can only read and output time series data similar

to the model containers in the Functional Mock-up Interface (FMI)

standard [5]. We believe this is a reasonable assumption since it

is often the case that the model vendors might hide the internal

implementation of their models such as algorithms to protect their

IPs. Moreover, this allows our framework to be applied to various

scenarios without the need for modifying the existing CPS settings.

Our view on the importance of the introduction of the anomaly

detection framework to the digital twin embedded CPSs is twofold.

First, as previously mentioned, while the primary objective of the

traditional fault detection and identification (FDI) approaches is

to detect faults or anomalous behaviours in the physical system,

the anomaly detection problem for the digital twin based CPSs also

considers modelling issues. Second, there is the need for a quick and

an efficient anomaly detection technique for the digital twin based

CPSs which can select appropriate correction mechanism(s) to keep

the system in the safe state. For example, there exist resilient control

algorithms for uncertain models [10] adversarial attacks [14] or

sensor/actuator faults [12]. Although the primary focus of our work

is not on the correction mechanism but on the general framework

for the anomaly detection, we foresee our approach can be merged

with such control algorithms to avoid potential system failures.

The rest of the paper is organised as follows. Section 2 enumer-

ates related works on the digital twin based anomaly detection

techniques. An overview of our anomaly detection framework for

digital twin based CPSs is presented in Section 3. The detailed

description of individual components in the framework is given

in Section 4. Experimental results that applying our technique on

the real-world example based on the chemical plant are shown in

Section 5. Finally, the paper concludes in Section 6.

2 LITERATURE REVIEW
In recent years, there have been several works that employ digital

twin in anomaly detection scenarios. In [18], authors introduced

a digital twin based anomaly detection system in operation and

management (O&M) of buildings and civil infrastructures. In their

work, the industry foundation classes (IFC) for the O&M data model

are extended to integrate the digital twin for anomaly detection.

The system uses the Bayesian online change point detection to

identify suspicious anomalies. The introduced technique targets

specifically for the asset management in construction and facility

management whereas we focus more on the broad categories of

the digital twin based CPSs.

A digital twin model construction and anomaly detection meth-

ods by observing indirect side-channels from the physical system

is proposed in [8]. Their technique localises anomalies by com-

paring digital twin fingerprints generated from the side-channel

emissions, such as acoustic, vibration and magnetic data etc., with

the set of observable runtime features from the physical system.

Nevertheless, their approach requires the existence of side-channel

emissions from the physical system, which is not always the case,

and do not consider the possibilities of the anomalies in the twin

model itself.

Several recent works show the use of digital twins for anomaly

detection in a wide range of engineering fields such as additive

manufacturing (AM) [2, 23], aircraft [24] and industrial plants [17].

A real-time performance monitoring and anomaly detection in

fused deposition modelling is proposed in [2]. The authors model

a digital twin as a discrete and continuous dynamics using the

process measurement data specified in signal temporal logic (STL).

Based on the fixed window size for observed data, their approach

validates if the monitored data violate the STL logic, which is the

detection mechanism for anomalies. In [23], authors introduced a

multi-modal sabotage attack detection system for AM machines.

Similar to [8], they observe analogue side-channel emissions for

detection of adversarial attacks and uses a simple threshold check

between the observed data and the ideal physical dynamics de-

scribed in G-code. A monitoring framework for a fleet of aircrafts

is introduced in [24]. Similar to our work, their framework consists

of sensor fault detection, and threshold monitoring for anomaly

detection and fault identification components. However, their ap-

proach requires a detailed digital twin model of the turbofan engine

and domain specific knowledge to generate fault signatures. Digital

twin based virtual sensor generation for a gas turbine engine is

proposed in [17]. Based on a pool of redundant sensors, the authors

employ Bayesian hierarchical models to simulate a batch of healthy

sensors for anomaly detections for spikes and bias faults.
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Figure 1: An overview of the anomaly detection framework
for the digital twin based CPS

To summarise, most of the existing works assume the digital

twin as a ‘ground truth’ and classify deviation from this as a fault

or anomalous behaviour. Our work consider the twin as imperfect

component in the framework and it can have missing behaviours

due to human errors or impractical to cover all possible reachable

states during the analysis phase, which is more realistic for most of

the real and large complex systems. Furthermore, our framework

aims to more general types of digital twin based CPSs, allowing

designers to replace components used in the detection mechanism

for their needs.

3 ARCHITECTURE
3.1 An Overview of the System
The architecture of the anomaly detection framework for digital

twin based CPSs is shown in Figure 1. Our system consists of a

physical plant, digital twin and a set of tasks, which are the specific

operations to be carried out by the physical plant. Examples of

tasks are the events that trigger a vehicle to move from a point A

to B or a robot picking up an item at a loading station and so on.

Such tasks are considered environmental inputs, generated from

the outside of the system, to both the plant and digital twin. The

conversion of the tasks to the environmental inputs is done by the

Information Processing Unit (IPU). In this work, we consider any

types of physical plant whose behaviour can be monitored via a

set of sensors, which generate time series data with a fixed period

𝑇𝑖 for each sensor 𝑖 ∈ Z≥0. Here, we formalise each component in

our framework shown in Figure 1.

Definition 1 (Digital Twin). Our digital twin is considered as
a function 𝑓𝑞𝑘 that accepts u ∈ R𝑛+𝑚 , which consists of driving 𝛾 and
environmental 𝛽 inputs:

x̂𝑘+1 = 𝑓𝑞𝑘 (x̂𝑘 , û𝑘 )
ŷ𝑘 = 𝑔𝑞𝑘 (x̂𝑘 , û𝑘 ) (1)

where
û =

[
𝛾1 . . . 𝛾𝑛 𝛽1 . . . 𝛽𝑚

]𝑇
x̂ ∈ R𝑛+𝑚 and 𝑔𝑞𝑘 are, respectively, the internal state of the twin

and the output function. An output vector of the digital twin ŷ𝑘 is used
for checking discrepancy between the twin model and it’s physical
plant. To build a digital twin based CPS that is scalable, we allow
only a partial of the system to be modelled in 𝑓𝑞𝑘 . In such case, digital
twin may require some inputs from the physical plant to simulate
the partial system. For example, if digital twin only models a robot
manipulator that transfers a workpiece between two locations, an
event that captures the arrival of the workpiece to the robot arm is a
driving input which should be provided by the physical plant. In case
if the twin models the complete system, the driving input is empty.

The digital twin we consider in this work is a hybrid system
whose operating mode at time 𝑘 is captured by one of its sub-

models 𝑞𝑘 ∈ {1, . . . , 𝑠}. More precisely, we consider the class of

switched (non-)linear systems whose switching logic is built in the

digital twin model.

Definition 2 (Physical plant). is defined similarly as in Eq. (1):

x𝑘+1 = 𝑓
𝑝
𝑞𝑘

(x𝑘 , u𝑘 )

y𝑘 = 𝑔
𝑝
𝑞𝑘

(x𝑘 , u𝑘 ) +w𝑘 + e𝑘 (2)

where
u =

[
𝛽1 . . . 𝛽𝑚

]𝑇
is an input vector that consists of environmental inputs 𝛽𝑚 only. w𝑘

and e𝑘 are the sensor noise and error vectors, respectively. The output
vector

y𝑘 =
[
𝑦1 . . . 𝑦𝑖 𝛾1 . . . 𝛾𝑛

]𝑇
consists of observable sensory data 𝑦1, . . . , 𝑦𝑖 which are directly com-
parable with ŷ𝑘 from the digital twin for discrepancy check. The
part 𝛾1, . . . , 𝛾𝑛 are the driving inputs to the digital twin as explained
previously. In this framework, we do not interfere control logic within
the plant and digital twin since our framework is focused on anomaly
detection and, therefore, the control signals are not considered in u
and û. Instead, we assume they are observed in y and ŷ.

3.2 Sources of Anomalies

Level 3Level 2Level 1

Anomalies

Plant

Sensor

Adversarial 
Attack

Bias/drifting/
precision

Failure

Age-related

Random

Premature

Twin

Missing 
Modes

Human error

Equipment 
change

Parameters

Adversarial 
Attack

Human error

Figure 2: Examples of the sources of anomalous behaviour

One possible method to test an anomalous behaviour at time 𝑘 is:

∥ [𝑦1, . . . , 𝑦𝑖 ]𝑇 − ŷ𝑘 ∥ ≥ 𝜀 (3)
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for some 𝜀. However, this test alone cannot classify the source of

anomalies, whether it is from the plant or digital twin, nor if the

anomaly is temporary (transient) or permanent. Therefore, we use

two specialised components in our framework: (1) a discrepancy
detector that first checks discrepancies between the plant’s sensory

data and estimated outputs from the digital twin and (2) an anomaly
classifier that further identifies the sources of anomalies.

A categorical overview of anomalous behaviours that can arise

in the digital twin based CPS is shown in Figure 2. We consider the

sources of anomalies that are divided into three levels. Depending

on how concrete the anomaly sources can be identified to specific

levels, our framework can generate a suggestion which correction

algorithm should be used to eliminate the problem, if possible, or

alert an administrator if the anomaly is permanent (i.e. unable to

fix).

Depending on how specific the anomalies can be classified, we

say our classifier is level 1, 2 or 3. For example, the level-1 classi-

fiers are simply able to tell if the anomaly is from the plant or the

twin. On the other hand, the level-2 classifier can further categorise,

for example, if the anomalies are due to physical sensor faults, or

inaccurate models in the digital twin. Components used for the

classifier can be replaced based on the designer’s need. In this pa-

per, we present one concrete example of anomaly classifier that

determines if the source of anomaly is from the plant, a missing

mode in the twin or sensor faults. In Figure 1, this is shown as grey

coloured nodes. Therefore, our anomaly classifier falls in the level-2

category. In particular, we employ Gaussian Mixture Model (GMM)

and the exchangeability test using martingale [15] for quick dis-

crepancy detection and further classification using Hidden Markov

Model (HMM). In the next section, we present detailed description

of individual components shown in Figure 1.

4 DETAILS OF THE COMPONENTS USED IN
THE FRAMEWORK

The framework consists of several components that perform specific

tasks as illustrated in Figure 1. Each component, depicted by rectan-

gular boxes, can be replaced with different approaches depending

on the application’s requirements on the accuracy and detection

speed trade-off etc. In this section, we present concrete examples

that are suitable for our need, which is the anomaly detection for

digital twin based chemical process plant.

The first step of our anomaly detection workflow is to preprocess

data obtained from both the plant and digital twin. We assume the

availability of fault-free data, which is collected from the physical

plant from its previous operation. These data are incomplete mean-

ing that they do not cover the complete operation of the target

plant in each operation mode such that there could be missing data,

which is often the case in most real-world scenarios. On the other

hand, simulated data is obtained from the digital twin. Again, we do

not assume the completeness of this data for each operation mode.

4.1 Clustering Fault-Free Data using
K-medoids

Streaming data generated by the large-scale CPS are often charac-

terised by high dimensional data. To make such data amenable to

our analysis, the k-medoids algorithm [20] is applied to reduce the

stream data dimension. Also, the k-medoids algorithm can group

the more correlated variables within the same cluster and separate

less correlated variables into different clusters. K-medoids algorithm

is similar to k-means clustering but uses the data points as cluster

centroids instead of their mean values. Therefore, the algorithm is

less susceptible to outliers [21].

The input to the clustering algorithm is the fault-free data ob-

tained from the physical plant:

𝐷 =


𝑦11 · · · 𝑦1𝜑
.
.
.

. . .
.
.
.

𝑦𝑁1 · · · 𝑦𝑁𝜑

 (4)

where 𝑁 is the number of variables 𝑣 in the dataset and there

are 𝜑 sampled data for each variable. We use notations 𝑦𝑖 and 𝐷𝑖

exchangeably to indicate an 𝑖’th row of𝐷 , which contains𝜑 samples

of the variable 𝑣𝑖 .

Given 𝑘 ≤ 𝑁 clusters to be created from the dataset, the k-
medoids algorithm associates each variable 𝑣𝑖 to the nearest medoid

𝑣 𝑗 based on the pairwise dissimilarities 𝑑𝑖, 𝑗 between them. In this

work, we use Pearson correlation coefficient for computing dissim-

ilarities:

𝑑𝑖, 𝑗 = 1 −
𝐾𝑖 (𝐾𝑗 )𝑇√︁

𝐾𝑖 (𝐾𝑖 )𝑇
√︃
𝐾𝑗 (𝐾𝑗 )𝑇

(5)

where 𝐾𝑖 = (𝐷𝑖 −𝐷𝑖 ) and 𝐷𝑖 is the 𝑖’th row of 𝐷 . We find medoids

using the algorithm presented in [20]. The initial 𝑘 medoids are

selected based on the first 𝑘 smallest values in the set:{
𝑥 𝑗

����� 𝑥 𝑗 = 𝑛∑︁
𝑖=1

𝑑𝑖, 𝑗∑𝑛
𝑙=1

𝑑𝑖,𝑙
, 1 ≤ 𝑗 ≤ 𝑁

}
(6)

where 𝑥 𝑗 is associated to the variable 𝑣 𝑗 . Given a set of initial

medoids 𝑉𝑚 ⊆ {𝑣1, . . . , 𝑣𝑁 }, initial clusters 𝐶 𝑗 are also created

based on the distances of variables 𝑣𝑖 to the nearest medoid:

𝐶 𝑗 =

{
𝑣𝑖

��� 𝑣𝑖 ∈ {𝑣1, . . . , 𝑣𝑁 }, argmin
𝑣𝑗 ∈𝑉𝑚

𝑑𝑖, 𝑗 = 𝑣 𝑗

}
,

𝑗 = 1, . . . , 𝑁 (7)

Next, a new medoid 𝑣𝑛𝑒𝑤
𝑖

is to be found for each cluster 𝑖 where

𝑣𝑛𝑒𝑤
𝑖

= argmin𝑣𝑘 ∈𝐶𝑖

∑ |𝐶𝑖 |
𝑗=1 𝑑𝑘,𝑗 and a new cluster is formed using

(7). The stopping condition for finding the next refined set of clus-

ters is when two consecutive sums of distances of all variables to

their respective medoids are equal.

To determine the optimal number of clusters for the k-medoids

algorithm, we use the reconstruction error[1], whose detail is pre-

sented in Appendix A.

4.2 Building Models for Discrepancy Detector
After clusters are identified, we build models used by the compo-

nents in the discrepancy detector. As shown in Figure 1, the detector

consists of conformal predictor, which is used for generating a se-

quence of statistical p-values, and the evaluator that decides if the
anomaly can be identified by directly inspecting the generated p-

values. A detailed illustration of the workflow of the discrepancy

detector is shown in Figure 3.

To generate p-values, we first build Gaussian Mixture Models

(GMM) for each variable in the clusters. GMM training is done
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Figure 3: The workflow of the discrepancy detector employ-
ing GMMs and martingale tests

during the offline process, which is indicated by the green boxes in

Figure 3. GMM is chosen in this work because we target the digital

twin and physical system that each exhibits multimode behaviours

as in Eq. (1) and (2). In GMM, the weighted sum of components

𝑃 (x|𝜃𝑚), where𝑚 is a component in the mixture distribution for a

variable, is defined as:

𝑃 (x|Θ) =
𝑀∑︁

𝑚=1

𝜙𝑚𝑃 (x|𝜃𝑚) (8)

where x ∈ R1×𝑛 is the 𝑛-dimensional vector, 𝜙𝑚 is the component

weight and the parameter 𝜃𝑚 = {𝜇𝑚, Σ𝑚} is a set of mean and

covariance matrix. A set Θ ⊆ 𝜙𝑀 × 𝜃𝑀 is a parameter for the

Gaussian mixture. Since our fault-free and digital twin simulation

data is incomplete, we use the Expectation Maximisation (EM)

algorithm [9] to train GMM. The training dataset to the algorithm

is obtained from the sequence of the absolute differences between

two data samples from the plant and digital twin (y𝑘 − ŷ𝑘 )abs.
Once GMM for a variable is trained, we compute a validation

set of p-values, which is considered as ‘normal’ behaviours for

the plant and digital twin. This is another batch of offline process

denoted as blue boxes in Figure 3. We first populate a strangeness

pool, which is a sequence of nonconformity measures 𝛼𝑘 generated

by the GMM from the training dataset (y𝑘 − ŷ𝑘 )abs. Next, we obtain
another sequence of nonconformity measures 𝛼𝑚 from a validation

dataset. Then a validation set of p-values {𝑝1, . . . , 𝑝𝑚} is generated
from 𝛼𝑘 and 𝛼𝑚 via

𝑝𝑚 =
|{𝑘 : 𝛼𝑘 > 𝛼𝑚}| + 𝑐𝑚 |{𝑘 : 𝛼𝑘 = 𝛼𝑚}|

𝑚
(9)

where 𝑐𝑚 ∈ [0, 1] is some random number.

We compute a martingale [15] from the validation set of p-values

and define a threshold limitℎ
𝑣𝑖
1 for the martingale that is considered

abnormal for 𝑣𝑖 . The general form of martingale

𝑆𝑛 =

𝑘∏
𝑖=1

𝑓𝑖 (𝑝𝑖 ), 𝑘 = 1, 2, . . . (10)

computes the expected value of 𝑆𝑘+1. The martingale theory states

𝑆𝑘 ≥ 0 and 𝑆𝑘 = E(𝑆𝑘+1 | 𝑆0, 𝑆2, . . . , 𝑆𝑘 ), which means the ex-

pected 𝑆𝑘+1 to be equal to the most recent observation of 𝑆𝑘 . The

betting function 𝑓𝑖 defines the growth rate of the martingale. Here,

we use a constant 𝜀 ∈ [0, 1] in the betting function and make the

power martingale which is defined as

𝑀𝜀
𝑘
=

𝑘∏
𝑖=1

𝜀𝑝𝜀−1𝑖 (11)

The equation indicates that 𝑀𝜀
𝑘
only grows for large number of

small p-values. For large p-values, the martingale will not grow

significantly and it becomes harder to reject the exchangeability

between the data from the plant and digital twin. The martingale

threshold ℎ
𝑣𝑖
1 for 𝑣𝑖 is computed using:

ℎ
𝑣𝑖
1 = max{𝑀𝜀

1, ..., 𝑀
𝜀
𝑘
} × 𝜇𝑣𝑖 (12)

where 𝜇𝑣𝑖 > 1 is a constant parameter which can be selected by the

performance of validation data.

During the online phase, the evaluator checks if the martingales

computed from the online data indicate anomalies, i.e. there exist

discrepancy between the data generated from the plant and digital

twin using ℎ
𝑣𝑖
1 for each 𝑣𝑖 . This is indicated by the red boxes in

Figure 3.

As in [1], we consider anomalies detected in each cluster as (1)

bounded or (2) multiple anomalies. Bounded anomalies are the ones

that rarely occur in a subset of variables in each cluster, for example

due to sensor faults. The intuition behind such types of anomalies is

that they are highly unlikely to occur simultaneously. On the other

hand, the source of multiple anomalies are most likely due to the

faults in the plant and/or digital twin where the large proportion

of anomalies would be observed from the clustered data stream.

To this end, we set the maximum number (typically small) of

variables, denoted as 𝜉1
𝑖
, for each cluster whose martingales can

grow greater than ℎ
𝑣𝑖
1 before they are considered as multiple anom-

alies. The evaluator generates a signature 𝑟1 which indicates the

type of anomalies based on the following method:

𝑟1 =


𝜂0 if 𝑥𝑖 = 0

𝜂1 if 0 < 𝑥𝑖 < 𝜉
1
𝑖

𝜂2 if 𝑥𝑖 ≥ 𝜉1
𝑖

(13)

where 𝑥𝑖 = |{𝑣 𝑗 | 𝑣 𝑗 ∈ 𝐶𝑖 , 𝑀𝜀
𝑘,𝑣𝑗

≥ ℎ
𝑣𝑗
1 }| for all clusters 𝐶𝑖 . The

signatures 𝜂0, 𝜂1 and 𝜂2 indicate, respectively, normal, bounded

and multiple anomalies detected by the evaluator.

The signature generated from the evaluator merely tells that

it has detected an anomaly without classifying its source. In par-

ticular, we would like to identify if the anomalies are due to the

sensor/plant faults or missing modes (equivalently sub-models)

in the digital twin. This task is done by the anomaly classifier as

shown in Figure 1, which is described in the next section.
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Figure 4: The workflow of the anomaly classifier employing
HMM

4.3 Building the Anomaly Classifier
The role of the anomaly classifier is to identify the source of the

anomalies, which is first observed from the discrepancy detector.

In this work, we use HMM-based anomaly classifier, which is built

from the fault free data during the offline analysis. A workflow

of the classifier is shown in Figure 4. Similar to the discrepancy

detector, this workflow also consists of training, validation and

online phases, which are depicted as green, blue and red boxes

respectively.

In our framework, HMM is a pair 𝐻 = ⟨𝑄,𝐴,𝑂, 𝐵, 𝜋⟩ where 𝑄 is

a finite set of 𝑛 states, 𝐴 ∈ R𝑛×𝑛 is a transition matrix represent-

ing an unobservable Markov chain and 𝐴𝑖 𝑗 indicates a transition

probability from state 𝑖 to state 𝑗 and
∑𝑛

𝑗=1 𝑎𝑖 𝑗 = 1. 𝑂 is a finite set

of possible observations Θ ∈ R𝑚 , which is a vector of coefficients

for the linear models with 𝑚 degrees. These models are trained

from the output sequences of the plant (i.e. segmented rows of

𝐷 with a fixed size). 𝐵 ∈ R𝑛 is an observation likelihood where

𝐵𝑖 = 𝑏𝑖 (Θ𝑖 ), Θ𝑖 ∈ 𝑂 is the probability of an observation Θ𝑖 being

generated from the state 𝑖 . 𝜋 ∈ R𝑛 is the initial probability array

where 𝜋𝑖 indicates the probability that the Markov chain will start

from the state 𝑖 .

During the training phase, 𝐻𝑖 is trained for each variable 𝑣𝑖 (𝑖’th

row of 𝐷) for the plant. Then, using the validation dataset in 𝐷 ,

which is non-overlapping with the training dataset, we compute

the log-likelihoods 𝐿𝑖 𝑗 for all sequences 𝑗 = (Θ1, . . . ,Θ𝑛) observed
from the variable 𝑣𝑖 :

𝐿𝑖 𝑗 = log
(
𝑃 (Θ𝑛 |𝑞𝑛)

)
(14)

where

𝑃 (Θ𝑛 |𝑞𝑛) =
𝑛∏
𝑖=1

𝑃 (Θ𝑖 |𝑞𝑖 )

Then for each 𝑣𝑖 , a log-likelihood threshold limit ℎ
𝑣𝑖
2 is computed

using:

ℎ
𝑣𝑖
2 =

{
min{𝐿𝑖1, . . . , 𝐿𝑖 𝑗 } / 𝑐 if min{𝐿𝑖1, . . . , 𝐿𝑖 𝑗 } ≥ 0

min{𝐿𝑖1, . . . , 𝐿𝑖 𝑗 } × 𝑐 if min{𝐿𝑖1, . . . , 𝐿𝑖 𝑗 } < 0
(15)

where 𝑐 is a constant parameters which can be selected by the

performance of validation data.

During online, a log-likelihood of a sequence of Θ for 𝑣𝑖 , denoted

as 𝐿′𝑣𝑖 , is compared with ℎ
𝑣𝑖
2 in each cluster to generate a signature

similar to (13):

𝑟2 =


𝜂0 if 𝑥𝑖 = 0

𝜂1 if 0 < 𝑥𝑖 < 𝜉
2
𝑣𝑖

𝜂2 if 𝑥𝑖 ≥ 𝜉2𝑣𝑖

(16)

where 𝑥𝑖 = |{𝑣 𝑗 | 𝑣 𝑗 ∈ 𝐶𝑖 , 𝐿′𝑣𝑗 < ℎ
𝑣𝑗
2 }| for all clusters 𝐶𝑖 . The sig-

nature generated by the classifier indicates more concrete sources

of anomalies when combined with the signature produced from

the discrepancy detector. A method for building a decision maker

based on these signatures is explained in the next section.

4.4 Decision Maker for Generating a
Suggestion

Table 1: A table for interpreting signatures generated by the
evaluator and the anomaly classifier

𝑟1 𝑟2 Description

𝜂0 – No anomalies detected

𝜂1 𝜂1 Sensor faults

𝜂1 𝜂0 or 𝜂2 Unclassified

𝜂2 𝜂0 Digital twin fault

𝜂2 𝜂1 Digital twin fault + sensor fault

𝜂2 𝜂2 Plant fault

Based on the signatures 𝑟1 and 𝑟2 generated by the evaluator and the

anomaly classifier, a suggestion to choose a correction mechanism

is made by the decision maker. Table 1 shows how the signatures

are interpreted by the decision maker.

The decision maker can conclude that there is no anomalies in

the system, regardless of the result of the anomaly classifier, if the

evaluator generates 𝑟1 = 𝜂0. If the evaluator indicates bounded

anomaly (𝜂1) but the classifier says otherwise, the decision maker

concludes this as unclassified behaviour since the classifier contra-

dicts the result of the evaluator. As explained in Section 4.2, the

bounded anomalies are considered as sensor faults and this is vali-

dated by both the evaluator and the anomaly classifier (𝑟1 = 𝜂1 and

𝑟2 = 𝜂1). The source of multiple anomalies indicated by evaluator

(𝑟1 = 𝜂2) is identified by the classifier as shown in Table 1. It is

possible that both the sensor and digital twin can exhibit anoma-

lous behaviours simultaneously, which is indicated by 𝑟2 = 𝜂1. This

is when the evaluator detects multiple anomalies from the data

observed from both the plant and digital twin (using GMM) but the

anomaly classifier only detects bounded anomalies from the plant

data (using HMM).

Our framework allows customising the decision maker to gener-

ate a specific suggestion. This suggestion can be used by external
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components to trigger an appropriate correction algorithm. For

future work, we plan to integrate some of the standard algorithms

in the framework such as attack resilience control [14][hidden for

blind review] and runtime parameter estimation for models [13].

In the next section we present the effectiveness of our anomaly

detection framework using the model of the chemical process plant.

5 EXPERIMENTAL RESULTS
The experiment was carried out to evaluate the performance of our

approach on four different types of anomalies: anomalies due to (1)

the sensor faults, (2) the plant fault, (3) the absence of sub-models

(modes) in digital twin and (4) the combination of (1) and (3). All

the experiments run on Intel Core(TM) i7-8650U CPU (1.9Ghz) and

16GB of RAM.

5.1 Performance Measurement Criteria
To evaluate the performance of our anomaly detection framework,

the following three criteria are used:

• Precision: TP / (TP + FP), the percentage of anomalies de-

tected which are real anomalies among all anomalies de-

tected.

• Recall: TP / (TP + FN), the percentage of anomalies detected

which are real anomalies among all real anomalies.

• Detection Delay (DD): the time delay (in number of data
samples) between the occurrence of the anomaly and the

time it is detected by the classifier.

where TP (True Positive) is the number of correctly detected anom-

alies, FP (False Positive) is the number of incorrectly detected anom-

alies and FN (False Negative) is the number of anomalies that are

failed to be detected. The Detection Delay is present in the form of

minimum, maximum, and mean values of the experiment results.

5.2 Building the Framework Components
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Figure 5: Tennessee Eastman Process Model

The whole experiment was conducted with the Tennessee Eastman

Process (TEP) model., whose layout is shown in Figure 5. Due

to space limitations, detailed description of the model is given in

Appendix B. During the processmodel simulation, themeasurement

noise was injected to the plant model to emulate the physical plant

sensors, On the other hand, the data collected from the simulation

without the noise were considered as the digital twin’s predictive

values of the chemical process. In this experiment, the discrepancy

data caused by the inaccurate simulation of digital model are not

considered due to the limitation of the experiment model. The

disturbance-free data gathered from the model simulated in the

base mode were used as fault-free data for variable clustering. The

same data were used for training and validation of the discrepancy

detector as well as the anomaly classifier.

The simulation time of the base mode operation was 72 hours

with a sampling rate of 0.01 hours per sample, thus, the simulation

contains 7200 data samples in total. The data fluctuation in the

transient period is much larger than the lateral processing period,

thus, the transient period is considered as another operation mode

compared with the processing period. In this experiment, we only

consider process period during the framework components training,

and the first 200 data samples were discarded from the physical

plant’s sensory data 𝐷𝑝𝑝 and digital twin’s predictive values 𝐷𝑑𝑡 to

exclude the transient period data. The remaining 7000 data samples

were divided into two parts: the training data set (denoted as 𝑇𝑝𝑝
for 𝐷𝑝𝑝 and 𝑇𝑑𝑡 for 𝐷𝑑𝑡 ) and the validation data set (denoted as

𝑉𝑝𝑝 for 𝐷𝑝𝑝 and 𝑉𝑑𝑡 for 𝐷𝑑𝑡 ), where the training data set contains

the first 4600 data samples and the validation data contains the last

2400 data samples.

During the variable clustering, 𝑇𝑑𝑡 was used to find the least

cost clusters for a given cluster number 𝑘 , and 𝑉𝑑𝑡 was used to

determine the optimal 𝑘 value. 𝑇𝑝𝑝 and 𝑇𝑑𝑡 were used to train the

GMMs in the discrepancy detector and to populate the strangeness

pool. The martingale threshold ℎ
𝑣𝑖
1 was calculated from 𝑉𝑝𝑝 and

𝑉𝑑𝑡 . Only 𝐷𝑝𝑝 was used by the anomaly classifier where 𝑇𝑝𝑝 was

used for the HMM training and𝑉𝑝𝑝 was used for parameter vectors

log-likelihood threshold calculation.

The 𝜀 for the power martingale shown in Eq. (11) was set to

0.92. Both the constants 𝜉𝑖1 and 𝜉𝑖2 in Eq. (13) and (16) were set to

2 for the clusters with size less than 4 or 30% of the cluster size

when this size was greater than 4. For the anomaly classifier, every

linear model was trained with 200 continuous data samples, and the

sliding window size𝑤 for HMM training was set to 100. The value

of 𝜉
𝑣𝑖
2 in Eq. (16) was set to be same as 𝜉𝑖1. In all the experiments,

different values of 𝜇𝑣𝑖 in Eq. (12) and 𝑐 in Eq. (15) were selected to

determine the the influence of their values on the performances of

discrepancy detector and anomaly classifier.

5.3 Experiment 1: Anomalies from the Sensor
Measurements

In this experiment, the following types of anomalies in the sensor

measurements were considered [16]: (1) Drift Faults: sensor output
value keeps increasing or decreasing compared with the normal

state; (2) Offset Faults: sensor output value jumps to a higher level

or drops to a lower level, but remains the similar trend; (3) Erratic
Faults: variation of the sensor output significantly increases above

the usual value; (4) Spike Faults: spikes are observed in the sensor

output intermittently; (5) Stuck Faults: the sensor output gets stuck
at a fixed value.

A disturbance-free data set gathered from TEP model operating

in base mode was used as fault-free data in this experiment, and 6

variables out of the 73 recorded variables were chosen as abnormal

sensors in the sensor measurement anomaly detection experiment.
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The 6 chosen variables were D feed (XMEAS-2), product separator

level (XMEAS-12), compressor work (XMEAS-20), C reactor feed

(XMEAS-25), F product component (XMEAS-39), and condenser

coolingwater flow (XMEAS-49)[11], which are in 6 different clusters

in the result of variables clustering, and the sensor physical location

is shown in Figure 5. The 5 types of sensor measurement anomalies

were injected into the fault-free data separately for every chosen

variable.

Table 2: Sensor Measurement Anomaly Detection Summary

Discrepancy Detector Threshold, 𝜇𝑣𝑖 Anomaly Classifier Threshold, 𝑐

1.1 1.2 1.5 2.0 1.1 1.25 2.0

Precision 100% 100% 100% 100% 65.1% 79.4% 87.5%

Recall 90% 87% 90% 90% 93.3% 90% 93.3%

DD (3,326,46) (4,299,41) (3,362,48) (4,399,51) (3,91,21) (4,316,31) (4,474,74)

The results of the experiment on the sensor anomaly detection

are shown in Figure 6 and Table 2. As shown in Figure 6, all drift,

offset and erratic faults can be identified by the both discrepancy

detector (DD) and anomaly classifier (AC). Besides, all spike faults

are detected by AC while some of the spike faults are missed by

DD, which is caused by the design nature of the exchangeability

martingale (EM) based discrepancy detector, as EM is more sensi-

tive for continuous anomalies and less sensitive to random spike.

Also, DD is able to detect all stuck faults while the AC misses some

of the stuck faults. This is because the HMM based anomaly clas-

sifier tends to detect the change of linear relationship among all

variables in a cluster. If the stuck value does not change the lin-

ear relationship, the HMM could not easily detect the anomaly as

shown in the results. Our framework allows other statistical tools

to replace EM and HMM methods used in DD and AC to improve

performance of the applications where the spike faults or stuck

faults are dominated.

Table 2 gives a summary of the framework performance with

different values of threshold constants 𝜇𝑣𝑖 and 𝑐 . The result shows

that the small range adjustment of 𝜇𝑣𝑖 does not affect the discrep-

ancy detector performance significantly, while the increasing in 𝑐

values resulted in the increase of detection delay time. In addition,

the synchronously increasing of precision and constant 𝑐 shows

that larger threshold constant of anomaly classifier can reduce the

false alarm rate.

5.4 Experiment 2: Anomalies from the Faults
in the Physical Plant

Examples of the physical plant faults considered in this paper are

the abnormal changes in the chemical flow rate, environmental

changes (e.g. temperature and pressure), and physical damages of

the machine components. As stated in Appendix B, 28 different

disturbances, which are considered as anomalies due to the faults

in physical system, were introduced to the TEP model. The 28 dif-

ferent disturbances can be categorized into four types: step change,

random variation, slow drift, and sticking valve. In this experiment,

4 disturbances from 4 different types were selected: (1) Step change:
Feed loss of chemical A, IDV-6; (2) Slow drift: Reaction kinetics

change, IDV-13; (3) Random variation: Chemicals A and C feed

pressure, IDV-26; (4) Sticking valve: reactor cooling water valve

sticking, IDV-14, and this disturbance is combined with D feed

temperature anomaly with type of step change, IDV-3, as suggested

by the model designer.

In this experiment, TEP model operating data in the base mode

with measurement noise and disturbance was used as physical plant

data. The operating data without noise and disturbance was used

as digital twin simulation data. In addition, the samples from the

2000th data point and onwards were used to avoid the influence of

the process model initial unstable states on experiment results.

Table 4: Physical Plant Anomaly Detection Summary

Disturbance Decision Maker

DD for different thresholds, 𝜇𝑣𝑖 & 𝑐

1.2 1.5 2 3

IDV-6 Physical Plant 77 125 177 200

IDV-13 Physical Plant 24 28 32 128

IDV-3 & IDV-14 Physical Plant 40 53 73 682

IDV-26 Physical Plant 1253 5282 5287 5298

The experiment results are shown in Tables 3 and 4. According to

Table 3, no false alarm has been detected by the discrepancy detec-

tor, and the anomaly classifier is shown to be more sensitive to step

change and slow drift anomaly types, and more robust to random

variation and sticking valve anomaly types. The result of Table 4

shows that the decision maker can still make correct predictions

when anomaly classifier does not perform well, which guarantees

the effectiveness of the whole framework. This is because the de-

cision maker makes the estimation based on whether there exists

any clusters to be found abnormal, but not how many clusters to be

found abnormal. Furthermore, with the increasing of the threshold

constant 𝜇𝑣𝑖 and 𝑐 , the detection delay time of decision maker is also

increasing, which is reasonable since the probability thresholds will

decrease with the increasing of threshold constants, and it requires

more data samples for discrepancy detector and anomaly classifier

trend down to a lower probability value.

5.5 Experiment 3: Anomalies Due to the Lack
of Modes in the Digital Twin Model

Physical processesmay exhibit different operating behaviours based

on different application requirements. In modelling terminology,

this is akin tomode switching in the hybrid system. This experiment

considers anomalies due to the changes in the operating mode of

the physical plant while the digital twin model does not change to

the corresponding mode in time due to the missing of new mode.

The same disturbances from Section 5.4 were used for emulating

the digital twin anomalies due to the missing modes. Contrary to

Section 5.4, the data with only measurement noise was considered

as the physical plant data, whereas the noise-free data with dis-

turbance was considered as the twin anomalies from the missing

modes.

The results of digital twin anomaly detection are shown in Ta-

bles 5 and 6. Table 5 presents the details of digital twinmodemissing

anomaly detection result. The result of anomaly classifier is not

present due to no anomaly exists in the physical plant data. As in

Table 5, the discrepancy detector is able to detect the discrepan-

cies caused by mode missing anomaly in almost 100% success rate,

which is similar with the the discrepancy detector performance in

Section 5.4. However, the table result also indicates the change of
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Figure 6: Sensor Measurement Anomaly Detection Details

Table 3: Physical Plant Anomaly Detection Details

Disturbance Discrepancy Detector Threshold, 𝜇𝑣𝑖 Anomaly Classifier Threshold, 𝑐

1.2 1.5 2.0 3.0 1.2 1.5 2.0 3.0

IDV-6

Precision 100% 100% 100% 100% 75% 75% 71.4% 60%

Recall 100% 100% 100% 100% 100% 100% 83.3% 50%

DD (8, 216, 104) (9, 216, 106) (9, 217, 107) (11, 217, 108) (8, 574, 229) (9, 598, 241) (9, 598, 207) (11, 305, 149)

IDV-13

Precision 100% 100% 100% 100% 62.5% 71.4% 71.4% 66.7%

Recall 100% 100% 100% 100% 71.4% 71.4% 71.4% 57.1%

DD (12, 286, 158) (12, 340, 167) (13, 2072, 415) (13, 2110, 425) (12, 4894, 955) (12, 1825, 399) (13, 5274, 893) (13, 588, 254)

IDV-3 &

IDV-14

Precision 100% 100% 100% 100% 20% 25% 25% 33.3%

Recall 100% 100% 100% 100% 33.3% 33.3% 33.3% 33.3%

DD (40, 2774, 954) (50, 2782, 962) (70, 2783, 975) (87, 2918, 1229) (40, 5294, 1309) (50, 1162, 596) (70, 1184, 612) (87, 1123, 631)

IDV-26

Precision 100% 100% 100% 100% 16.7% 16.7% 20% 20%

Recall 100% 100% 100% 100% 33.3% 33.3% 33.3% 33.3%

DD (400, 2243, 1083) (442, 2254, 1134) (442, 2263, 1275) (443, 2813, 1462) (400, 5272, 1681) (442, 5282, 2566) (442, 5287, 2040) (443, 5298, 2049)

Table 5: Digital Twin Anomaly Detection Detail

Disturbance

Discrepancy Detector Threshold, 𝜇𝑣𝑖
1.2 1.5 2.0 3.0

IDV-6

Precision 100% 100% 100% 100%

Recall 100% 100% 100% 85.7%

DD (10, 216, 94) (10, 216, 95) (11, 217, 100) (12, 217, 94)

IDV-13

Precision 100% 100% 100% 100%

Recall 100% 100% 100% 100%

DD (11, 228, 117) (12, 229, 122) (13, 229, 122) (14, 231, 125)

IDV-3 &

IDV-14

Precision 100% 100% 100% 100%

Recall 100% 100% 100% 100%

DD (114, 4130, 1460) (168, 4104, 1607) (169, 4105, 1637) (170, 4107, 1639)

IDV-26

Precision 100% 100% 100% 100%

Recall 100% 100% 100% 100%

DD (3919, 3919, 3919) (3919, 3919, 3919) (3920, 3920, 3920) (3922, 3922, 3922)

Table 6: Digital Twin Anomaly Detection Summary

Disturbance Decision Maker

DD for different thresholds, 𝜇𝑣𝑖 & 𝑐

1.2 1.5 2 3

IDV-6 Digital Twin 10 10 11 13

IDV-13 Digital Twin 11 12 13 14

IDV-3 & IDV-14 Digital Twin 114 168 169 170

IDV-26 Digital Twin 3919 3919 3920 3922

discrepancy detector threshold constant 𝑐 does not affect the detec-

tor’s performance. Table 6 shows that the decision maker is able

to make correct estimation for all tested missing mode anomalies,

while the change of detection delay time is not obvious with the

increasing of threshold constant 𝑐 .

Table 7: Anomaly classifier result for combinational anomalies

Anomaly Classifier Threshold, 𝑐

1.1 1.2 1.3 1.5

Precision 100% 100% 100% 100%

Recall 66.7% 66.7% 66.7% 56%

DD (0, 3442, 512) (0, 3460, 515) (0, 3483, 519) (0, 1118, 104)

5.6 Experiment 4: Anomalies Due to Multiple
Sources

This experiment was designed to evaluate the performance of our

detection mechanism when both the faulty sensors and the missing

modes in the digital twin induce anomalies. For sensor measure-

ment anomaly, three types of sensor measurement fault were used:

drift fault, erratic fault, and offset fault, and those sensor measure-

ment faults were applied to 6 variables which were the same as

Section 5.3 (Experiment 1). For digital twin anomaly, two distur-

bances, IDV-13 and IDV-3 & IDV-14, were introduced into the mode

1 noise-free operation data to emulate the digital twin mode miss-

ing anomalies. In each test, only one type of sensor measurement

fault was used together with one digital twin missing mode.

The experiment results are shown in Table 7, Figure 7 and 8.

Table 7 includes the summary of anomaly classifier performance on

sensor measurement anomalies, Figure 7 shows the details of the

anomaly classifier performance, and Table 8 shows the discrepancy

detector performance on combinational anomalies data. According
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Figure 7: Anomaly classifier result details for combinational anomalies

Table 8: Discrepancy detector result for combinational anomalies

Discrepancy Detector Threshold, 𝜇𝑣𝑖
1.2 1.5 2.0 3.0

IDV-13

Precision 100% 100% 100% 100%

Recall 100% 100% 100% 100%

DD (7, 377, 196) (7, 379, 197)) (8, 414, 203) (9, 416, 212)

IDV-3 &

IDV-14

Precision 100% 100% 100% 100%

Recall 100% 100% 100% 100%

DD (114, 4103, 1461) (168, 4820, 1607) (169, 4105, 1636) (170, 4107, 1637)

to Table 7, no normal data have been classified as anomalies by the

anomaly classifier, while 1/3 of the real abnormal data are missed

by the anomaly classifier during the online monitoring, which

demonstrates that the anomaly classifier is less sensitive to sensor

measurement faults. Figure 7 shows that for some of the variables,

small threshold constant range adjustment did not influence the

detection delay time significantly. This means the probability of the

corresponding variables change rapidlywhen the anomalies happen.

The result of Table 8 shows the high sensitiveness and accuracy

of discrepancy detector on digital twin mode missing anomalies.

The discrepancy detector does not miss any true abnormal data and

classify normal data as anomaly. Combining the results of Table 7

and Table 8, the correctness of the decision maker remains in 66.7%.

6 CONCLUSION
This paper introduced an anomaly detection framework for digital

twin based CPS. The framework consists of the Gaussian Mixture

Model based discrepancy detector, which initially checks if there is

an anomaly from two data sources one from the plant and the other

from the digital twin. Then the anomaly classifier, which employs

Hidden Markov Model, further classifies the types of anomalies

based on the signatures generated from the discrepancy detector.

The experiments showed the application of our framework using

the Tennessee Eastman process model that correctly detected and

identified different types of anomalies. In future work, we would

like to integrate correction mechanisms to our framework that can

keep the system in the stable state depending on the results of the

classification.
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A OPTIMAL CLUSTER NUMBER SELECTION
STRATEGY

The overall strategy for determining the optimal number of clus-

ters is to find the number of clusters with smallest reconstruction

error [1] by iterating all possible numbers of clusters. The whole

collected fault-free data set is divided into two parts: the training

data set 𝐷𝑡 and the validation data set 𝐷𝑣 , which are defined as

follows:

𝐷𝑡 =


𝑦11 · · · 𝑦1𝜇
.
.
.

. . .
.
.
.

𝑦𝑁1 · · · 𝑦𝑁𝜇

 , 𝐷𝑣 =


𝑦1
𝜇+1 · · · 𝑦1

𝑇

.

.

.
. . .

.

.

.

𝑦𝑁
𝜇+1 · · · 𝑦𝑁

𝑇


where 𝐷𝑡 contains 𝑁 variables and 𝜇 data samples, and 𝐷𝑣 contains

𝑁 variables and 𝑇 − 𝜇 data samples. The minimum number of

clusters is 1, and for avoiding overspreading of the variables, the

maximum number of clusters, 𝑘𝑚𝑎𝑥 , should not be larger than
1
2𝑁 .

The iteration of number of clusters starts from 1 to 𝑘𝑚𝑎𝑥 .

For every tested number of clusters, 𝑘 , the k-medoids algorithm

is applied on 𝐷𝑡 , and the steps for obtaining the reconstruction

errors 𝑒𝑘
𝑡𝑜𝑡𝑎𝑙

are specified as below:

(1) After applying the k-medoids algorithm for given cluster

number 𝑘 on 𝐷𝑡 , the clusters 𝐶1,𝐶2, ...,𝐶𝑘 are generated.

(2) Since the variables in the same cluster are highly correlated,

for each cluster 𝐶 𝑗 (with 𝑗 = 1, ..., 𝑘), |𝐶 𝑗 | Multiple-Input

Single-Output (MISO) predictive models (| · | is the cardinality
operator) are created. Assuming the variable 𝑖 is in cluster𝐶 𝑗

(with 𝑖 = 1, ..., |𝐶 𝑗 |), the MISO predictive model for variable

𝑖 sets variable 𝑖 as single output and the remaining |𝐶 𝑗 | − 1
variables as inputs, which can be represented as:

𝑦
𝑖, 𝑗
𝑡 =𝑔𝑖, 𝑗 (𝑦𝑖, 𝑗

𝑡−1, 𝑦
𝑖, 𝑗

𝑡−2, ..., 𝑦
𝑖, 𝑗
𝑡−𝜏 ,

𝑦
1, 𝑗
𝑡 , 𝑦

1, 𝑗
𝑡−1, 𝑦

1, 𝑗
𝑡−2, ..., 𝑦

1, 𝑗
𝑡−𝜏 , ...,

𝑦
|𝐶 𝑗 |, 𝑗
𝑡 , 𝑦

|𝐶 𝑗 |, 𝑗
𝑡−1 , 𝑦

|𝐶 𝑗 |, 𝑗
𝑡−2 , ..., 𝑦

|𝐶 𝑗 |, 𝑗
𝑡−𝜏 ,Θ)

where the 𝜏 and Θ are suitably estimated based on the value

of 𝑁 [1]. Among all MISO predictive models, the AutoRe-

gressive with eXogenous input (ARX) model is used. The

ARX model for variable 𝑖 in cluster 𝐶 𝑗 is denoted as 𝑀
𝑖, 𝑗

Θ ,

and 𝑁 ARX models will be trained based on 𝐷𝑡 in total.

(3) For every ARX model 𝑀
𝑖, 𝑗

Θ (with 𝑖 = 1, ..., |𝐶 𝑗 | and 𝑗 =

1, ..., 𝑘), the predictive vector 𝑌𝑖 for variable 𝑖 is calculated

with input 𝐷𝑣 on model 𝑀
𝑖, 𝑗

Θ , where 𝑌 𝑖 = [𝑦𝑖
𝜇+1, · · · , 𝑦

𝑖
𝑇
].

Denote the actual value of variable 𝑖 in 𝐷𝑣 as 𝐷𝑖
𝑣 , where

𝐷𝑖
𝑣 = [𝑦𝑖

𝜇+1, · · · , 𝑦
𝑖
𝑇
], the reconstruction error 𝑒𝑖, 𝑗 for vari-

able 𝑖 on model𝑀
𝑖, 𝑗

Θ is defined as follows:

𝑒𝑖, 𝑗 =
∑𝑇
𝑡=𝜏+1 𝑎𝑏𝑠 (𝑦𝑖𝑡 − 𝑦𝑖𝑡 )

(4) The overall reconstruction error 𝑒𝑘
𝑜𝑣𝑒𝑟𝑎𝑙𝑙

is define as

𝑒𝑘
𝑜𝑣𝑒𝑟𝑎𝑙𝑙

= 1
𝑘

∑𝑘
𝑗=1

1
|𝐶 𝑗 |

∑ |𝐶 𝑗 |
𝑖=1 𝑒𝑖, 𝑗 .

The value of the overall reconstruction error evaluates the ability

of the ARX models trained on 𝐷𝑡 upon capturing the relationships

existing each cluster. After all iterations, choosing the 𝑘 with least

overall reconstruction error as the optimal number of clusters.

B TENNESSEE EASTMAN PROCESS MODEL
The Tennessee Eastman Process (TEP) model is originated from an

actual industrial process of Eastman Chemical Company. Originally

introduced in [11], the model was initially coded with FORTRAN

that describes the non-linear relationships in the unit operations

and the material and energy balances. The model was then revised

in [4] using MATLAB/Simulink that uses a variable-step integrator.

In this section, the revised model is used for evaluating the perfor-

mance of our detection technique for various types of anomalies.

As shown in Figure 5, the TEP model consists of five major unit

operations: reactor, product condenser, vapour-liquid separator,

recycle compressor and product stripper. The chemical process

involves four reactants that produces two products and two byprod-

ucts. The model consists of 73 measurable outputs and can be con-

figured to introduce 28 different disturbances that emulate faults.

There are two modes of process operation for the revised models:

base mode and alternative mode, which are called mode 1 and mode

3 in [11]. Furthermore, the model provides a set of parameters for

activating or deactivating the measurement noises.

54


	Abstract
	1 Introduction
	2 Literature Review
	3 Architecture
	3.1 An Overview of the System
	3.2 Sources of Anomalies

	4 Details of the Components Used in The Framework
	4.1 Clustering Fault-Free Data using K-medoids
	4.2 Building Models for Discrepancy Detector
	4.3 Building the Anomaly Classifier
	4.4 Decision Maker for Generating a Suggestion

	5 Experimental Results
	5.1 Performance Measurement Criteria
	5.2 Building the Framework Components
	5.3 Experiment 1: Anomalies from the Sensor Measurements
	5.4 Experiment 2: Anomalies from the Faults in the Physical Plant
	5.5 Experiment 3: Anomalies Due to the Lack of Modes in the Digital Twin Model
	5.6 Experiment 4: Anomalies Due to Multiple Sources

	6 Conclusion
	Acknowledgments
	References
	A Optimal Cluster Number Selection Strategy
	B Tennessee Eastman Process Model



